Sunday, July 19, 2020

How can carrying some extra body fat be healthy?


Most of the empirical investigations into the association between body mass index (BMI) and mortality suggest that the lowest-mortality BMI is approximately on the border between the normal and overweight ranges. Or, as Peter put it (): "Getting fat is good."

As much as one may be tempted to explain this based only on the relative contribution of lean body mass to total weight, the evidence suggests that both body fat and lean body mass contribute to this phenomenon. In fact, the evidence suggests that carrying some extra body fat may be healthy for many.

Yet, the scientific evidence strongly suggests that body fat accumulation beyond a certain point is unhealthy. There seems to be a sweet spot of body fat percentage, and that sweet spot may vary a lot across different individuals.

One interesting aspect of most empirical investigations of the association between BMI and mortality is that the participants live in urban or semi-urban societies. When you look at hunter-gatherer societies, the picture seems to be a bit different. The graph below shows the distribution of BMIs among males in Kitava and Sweden, from a study by Lindeberg and colleagues ().



In Sweden, a lowest mortality BMI of 26 would correspond to a point on the x axis that would rise up approximately to the middle of the distribution of data points from Sweden in the graph. It is reasonable to assume that this would also happen in Kitava, in which case the lowest mortality BMI would be around 20.

One of the key differences between urbanites and hunter-gatherers is the greater energy expenditure among the latter; hunter-gatherers generally move more. This provides a clue as to why some extra body fat may be healthy among urbanites. Hunter-gatherers spend more energy, so they have to consume more “natural” food, and thus more nutrients, to maintain their lean body mass.

A person’s energy expenditure is strongly dependent on a few variables, including body weight and physical activity. Let us assume that a hunter-gatherer, due to a reasonably high level of physical activity, maintains a BMI of 20 while consuming 3,000 kilocalories (a.k.a. calories) per day. An urbanite with the same height, but a lower level of physical activity, may need a higher body weight, and thus a higher BMI, to consume 3,000 calories per day at maintenance.

And why would someone want to consume 3,000 calories per day? Why not 1,500? The reason is nutrient intake, particularly micronutrient intake – intake of vitamins and minerals that are used by the body in various processes. Unfortunately it seems that micronutrient supplementation (e.g., a multivitamin pill) is largely ineffective except in cases of pathological deficiency.

Urbanites may need to carry a bit of extra body fat to be able to have an appropriate intake of micronutrients to maintain their lean body structures in a healthy state. Obviously the type of food eaten matters a lot. A high nutrient-to-calorie ratio is generally desirable. However, we cannot forget that we also need to eat fat, in part because without it we cannot properly absorb the all-important fat-soluble vitamins. And dietary fat is the most calorie-dense nutrient of all.

Why not putting on extra muscle instead of carrying the extra fat? For one, that is not easy when you are a sedentary urbanite. Particularly after a certain age, if you try too hard you end up getting injured. But there is another interesting angle to consider. Humans, like many other animals, have genetic “protections” against high muscularity, such as the protein myostatin. Myostatin is produced mostly in muscle cells; it acts on muscle, by inhibiting its growth.

Say what? Why would evolution favor something like myostatin? Big, muscular humans could be at the top of the food chain by physical strength alone; they could kill a lion with their bare hands. Well, it is possible. (Many men like to think of themselves as warriors, probably because most of them are not.) But evolution favors what works best given the ecological niches available. In our case, it favored bigger and more plastic brains to occupy what Steve Pinker called a “cognitive niche”.

Even though fat mass is not inert, secreting a number of hormones into the bloodstream, the micronutrient “need” of fat mass is likely much lower than the micronutrient need of non-fat mass. That is, a kilogram of lean mass likely puts a higher demand on micronutrients than a kilogram of fat mass. This should be particularly the case for organs, such as the liver, but also applies to muscle tissue.

While gaining muscle mass through moderate exercise is extremely healthy, bulking up beyond one’s natural limitations may actually backfire. It could increase the demand for micronutrients above what a person can actually consume and absorb through a healthy nutritious diet. Some extra fat mass allows for a higher level of micronutrient intake at weight maintenance, with a lower demand for micronutrients than the same amount of extra lean mass.

Some people are naturally more muscular. Their frame and underlying organ-based capabilities probably support that. It is often visibly noticeable when they go beyond their organ-based capabilities. A common trait among many professional bodybuilders, who usually go beyond the genetic gifts that they naturally have, is an abnormal swelling of internal organs.

What complicates this discussion is that all of this seems to vary from individual to individual. People have to find their sweet spots, and doing that may not be the simplest of tasks. For example, even measuring body fat percentage with some precision is difficult and costly. Also, certain types of fat are less desirable than others – visceral versus subcutaneous body fat. It is not easy differentiating one from the other ().

How do you find your sweet spot in terms of body fat percentage? One of the most promising approaches is to find the point at which your waist-to-weight ratio is minimized ().

Monday, June 22, 2020

Eating fish whole: Sardines

Different parts of a fish have different types of nutrients that are important for our health; this includes bones and organs. Therefore it makes sense to consume the fish whole, not just filets made from it. This is easier to do with small than big fish.

Small fish have the added advantage that they have very low concentrations of metals, compared to large fish. The reason for this is that small fish are usually low in the food chain, typically feeding mostly on plankton, especially algae. Large carnivorous fish tend to accumulate metals in their body, and their consumption over time may lead to the accumulation of toxic levels of metals in our bodies.

One of my favorite types of small fish is the sardine. The photo below is of a dish of sardines and vegetables that I prepared recently. Another small fish favorite is the smelt (see this post). I buy wild-caught sardines regularly at the supermarket.


Sardines are very affordable, and typically available throughout the year. In fact, sardines usually sell for the lowest price among all fish in my supermarket; lower even than tilapia and catfish. I generally avoid tilapia and catfish because they are often farmed (tilapia, almost always), and have a poor omega-6 to omega-3 ratio. Sardines are rich in omega-3, which they obtain from algae. They have approximately 14 times more omega-3 than omega-6 fatty acids. This is an excellent ratio, enough to make up for the poorer ratio of some other foods consumed on a day.

This link gives a nutritional breakdown of canned sardines; possibly wild, since they are listed as Pacific sardines. (Fish listed as Atlantic are often farm-raised.) The wild sardines that I buy and eat probably have a higher vitamin and mineral content that the ones the link refers to, including higher calcium content, because they are not canned or processed in any way. Two sardines should amount to a little more than 100 g; of which about 1.6 g will be the omega-3 content. This is a pretty good amount of omega-3, second only to a few other fish, like wild-caught salmon.

Below is a simple recipe. I used it to prepare the sardines shown on the photo above.

- Steam cook the sardines for 1 hour.
- Spread the steam cooked sardines on a sheet pan covered with aluminum foil; use light olive oil to prevent the sardines from sticking to the foil.
- Preheat the oven to 350 degrees Fahrenheit.
- Season the steam cooked sardines to taste; I suggest using a small amount of salt, and some chili powder, garlic powder, cayenne pepper, and herbs.
- Bake the sardines for 30 minutes, turn the oven off, and leave them there for 1 hour.

The veggies on the plate are a mix of the following: sweet potato, carrot, celery, zucchini, asparagus, cabbage, and onion. I usually add spinach but I had none around today. They were cooked in a covered frying pan, with olive oil and a little bit of water, in low heat. The cabbage and onion pieces were added to the mix last, so that in the end they had the same consistency as the other veggies.

I do not clean, or gut, my sardines. Normally I just wash them in water, as they come from the supermarket, and immediately start cooking them. Also, I eat them whole, including the head and tail. Since they feed primarily on plant matter, and have a very small digestive tract, there is not much to be “cleaned” off of them anyway. In this sense, they are like smelts and other small fish.

For many years now I have been eating them like that; and so have my family and some friends. Other than some initial ew’s, nobody has ever had even a hint of a digestive problem as a result of eating the sardines like I do. This is very likely the way most of our hominid ancestors ate small fish.

If you prepare the sardines as above, they will be ready to store, or eat somewhat cold. There are several variations of this recipe. For example, you can bake the sardines for 40 minutes, and then serve them hot.

You can also add the stored sardines later to a soup, lightly steam them in a frying pan (with a small amount of water), or sauté them for a meal. For the latter I would recommend using coconut oil and low heat. Butter can also be used, which will give the sardines a slightly different taste.

Tuesday, May 26, 2020

Ketones and Ketosis: Physiological and pathological forms

Ketones are compounds that have a specific chemical structure. The figure below (from: Wikipedia) shows the chemical structure of various types of ketones. As you can see, all ketones share a carbonyl group; that is the “O=” part of their chemical structure. A carbonyl group is an oxygen atom double-bonded to a carbon atom.


Technically speaking, many substances can be classified as ketones. Not all of these are involved in the same metabolic processes in humans. For example, fructose is technically a ketone, but it is not one of the three main ketones produced by humans from dietary macronutrients (discussed below), and is not metabolized in the same way as are those three main ketones.

Humans, as well as most other vertebrates, produce three main ketones (also known as ketone bodies) from dietary macronutrients. These are acetone, acetoacetate and beta-hydroxybutyrate. Low carbohydrate diets tend to promote glycogen depletion, which in turn leads to increased production of these ketones. Glycogen is stored in the liver and muscles. Liver glycogen is used by the body to maintain blood glucose levels within a narrow range in the fasted state. Examples of diets that tend to promote glycogen depletion are the Atkins Diet and Kwaśniewski’s Optimal Diet.

A search for articles on ketosis in scientific databases usually returns a large number of articles dealing with ketosis in cows. Why? The reason is that ketosis reduces milk production, by both reducing the amount of fat and glucose available for milk synthesis. In fact, ketosis is referred to as a “disease” in cows.

In humans, most articles on ketosis refer to pathological ketosis (a.k.a. ketoacidosis), especially in the context of uncontrolled diabetes. One notable exception is an article by Williamson (2005), from which the table below was taken. The table shows ketone concentrations in the blood under various circumstances, in mmol/l.


As you can see, relatively high concentrations of ketones occur in newborn babies (neonate), in adults post-exercise, and in adults fed a high fat diet. Generally speaking, a high fat diet is a low carbohydrate diet, and a high carbohydrate diet is a low fat diet. (One occasionally sees diets that are high in both carbohydrates and fat; which seem excellent at increasing body fat and thus reducing life span. This diet is apparently popular among sumo wrestlers, where genetics and vigorous exercise usually counter the negative diet effects.)

Situations in which ketosis occurs in newborn babies (neonate), in adults post-exercise, and in adults fed a high fat diet are all examples of physiological, or benign, ketosis. Ketones are also found in low concentrations in adults fed a standard American diet.

Ketones are found in very high concentrations in adults with untreated diabetes. This is an example of pathological ketosis, even though ketones are produced as part of a protective compensatory mechanism to spare glucose for the brain and red blood cells (which need glucose to function properly). Pathological ketosis leads to serum ketone levels that can be as much as 80 times (or more) those found in physiological ketosis.

Serum ketone concentrations increase proportionally to decreases in stored glycogen and, when glycogen is low or absent, correlate strongly (and inversely) with blood glucose levels. In some individuals glycogen is practically absent due to a genetic condition that leads to hepatic glycogen synthase deficiency. This is a deficiency of the enzyme that promotes glycogen synthesis by the liver. The figure below (also from Williamson, 2005) shows the variations in glucose and ketone levels in a child with glycogen synthase deficiency.


What happened with this child? Williamson answers this question: “It is of interest that this particular child suffered no ill effects from the daily exposure to high concentrations of ketone bodies, underlining their role as normal substrates for the brain when available.”

Unlike glucose and lipoprotein-bound fats (in VLDL, for example), unused ketones cannot be converted back to substances that can be stored by the body. Thus excess ketones are eliminated in the urine; leading to their detection by various tests, e.g., Ketostix tests. This elimination of unused ketones in the urine is one of the reasons why low carbohydrate diets are believed to lead to enhanced body fat loss.

In summary, ketones are present in the blood most of the time, in most people, whether they are on a ketogenic diet or not. If they do not show up in the urine, it does not mean that they are not present in the blood; although it usually means that their concentration in the blood is not that high. Like glucose, ketones are soluble in water, and thus circulate in the blood without the need for carriers (e.g., albumin, which is needed for the transport of free fatty acids; and VLDL, needed for the transport of triglycerides). Like glucose, they are used as sources of energy by the brain and by muscle tissues.

It has been speculated that ketosis leads to accelerated aging, through the formation of advanced glycation endproducts (AGEs), a speculation that seems to be largely unfounded (see this post). It is difficult to believe that a metabolic process that is universally found in babies and adults post-exercise would have been favored by evolution if it led to accelerated aging.

References:

Williamson, D.H. (2005). Ketosis. Encyclopedia of Human Nutrition, 91-98.

Wednesday, April 15, 2020

Herd immunity


The figure below is adapted from an article published in 2011 by Fine and colleagues (). The article discusses the concept of “herd immunity”: individuals with immunity against a disease act as a “shield” for the community, slowing or stopping the spread of the disease.



At the top of the figure, the number of infected individuals grows exponentially, until a certain number of individuals with immunity is achieved. At the bottom of the figure, those with immunity “absorb and kill” the infectious agent, without passing it forward – significantly limiting the progression of the disease.

This illustrates the likely impact of vaccination in cases where immunity being acquired through full infection is problematic, such as with COVID-19. In these cases, vaccination would slow or stop the spread of the disease, even if only a proportion of the community is vaccinated.

That is, until the infectious agent mutates!

Wednesday, April 1, 2020

China’s relaxing of COVID-19 social distancing policy after containment appears to have worked


The graphs below summarize key results from a study published in early 2020 by Ainslie and colleagues (). Dr. Ainslie is in the Faculty of Medicine, School of Public Health, Imperial College London. The study looked at within-city movement, as a proxy for economic activity, and how that movement has influenced the numbers of new cases of COVID-19 in various areas, after initial containment.



As you can see, after initial containment is achieved, within-city movement (measured through a “Movement Index”) seems to be uncorrelated with new COVID-19 cases; or somewhat negatively correlated, as the authors note.

This surprising and counterintuitive outcome may be due to people becoming much more cautious about social interactions.

Sunday, March 15, 2020

The amounts of water, carbohydrates, fat, and protein lost during a 30-day fast

When it comes to losing fat and maintaining muscle, at the same time, there are no shortcuts. The process generally has to be slow to be healthy. When one loses a lot of weight in a few days, most of what is being lost is water, followed by carbohydrates. (Carbohydrates are stored as liver and muscle glycogen.) Smaller amounts of fat and protein are also lost. The figure below (see reference at the end of post) shows the weights in grams of stored water, carbohydrates (glycogen), fat, and protein lost during a 30-day water fast.


On the first few days of the fast a massive amount of water is lost, even though drinking water is allowed in this type of fast. A significant amount of glycogen is lost as well. This is no surprise. About 2.6 g of water are lost for each 1 g of glycogen lost. That is, water is stored by the body proportionally to the amount of glycogen stored. People who do strength training on a regular basis tend to store more glycogen, particular in muscle tissue; this is a compensatory adaptation. Those folks also tend to store more water.

Not many people will try a 30-day fast. Still, the figure above has implications for almost everybody.

One implication is that if you use a bioimpedance scale to measure your body fat, you can bet that it will give you fairly misleading results if your glycogen stores are depleted. Your body fat percentage will be overestimated, because water and glycogen are lean body mass. This will happen with low carbohydrate dieters who regularly engage in intense physical exercise, aerobic or anaerobic. The physical exercise will deplete glycogen stores, which will typically not be fully replenished due to the low intake of carbohydrates.

Light endurance exercise (e.g., walking) is normally easier to maintain with a depleted “glycogen tank” than strength training, because light endurance exercise relies heavily on fat oxidation. It uses glycogen, but more slowly. Strength training, on the other hand, relies much more heavily on glycogen while it is being conducted (significant fat oxidation occurs after the exercise session), and is difficult to do effectively with a depleted “glycogen tank”.

Strength training practitioners often will feel fatigued, and will probably be unable to generate supercompensation, if their “glycogen tank” is constantly depleted. Still, compensatory adaptation can work its “magic” if one persists, and lead to long term adaptations that make athletes rely much more heavily on fat than the average person as a fuel for strength training and other types of anaerobic exercise. Some people seem to be naturally more likely to achieve this type of compensatory adaptation; others may never do so, no matter how hard they try.

Another implication is that you should not worry about short-term weight variations if your focus is on losing body fat. Losing stored water and glycogen may give you an illusion of body fat loss, but it will be only that – an illusion. You may recall this post, where body fat loss coupled with muscle gain led to some weight gain and yet to a much improved body composition. That is, the participants ended up leaner, even though they also weighed more.

The figure above also gives us some hints as to what happens with very low carbohydrate dieting (i.e., daily consumption of less than 20 grams of carbohydrates); at least at the beginning, before long term compensatory adaptation. This type of dieting mimics fasting as far as glycogen depletion is concerned, especially if protein intake is low, and has many positive short term health benefits. The depletion is not as quick as in a fast because a high fat and/or protein diet promotes higher rates of fat/protein oxidation and ketosis than fasting, which spare glycogen. (Yes, dietary fat spares glycogen. It also spares muscle tissue.) Still, the related loss of stored water is analogous to that of fasting, over a slightly longer period. The result is a marked weight loss at the beginning of the diet. This is an illusion as far as body fat loss is concerned.

Dietary protein cannot be used directly for glycogenesis; i.e., for replenishing glycogen stores. Dietary protein must first be used to generate glucose, through a process called gluconeogenesis. The glucose is then used for liver and muscle glycogenesis, among other things. This process is less efficient than glycogenesis based on carbohydrate sources (particularly carbohydrate sources that combine fructose and glucose), which is why for quite a few people (but not all) it is difficult to replenish glycogen stores and stimulate muscle growth on very low carbohydrate diets.

Glycogen depletion appears to be very healthy, but most of the empirical evidence seems to suggest that it is the depletion that creates a hormonal mix that is particularly health-promoting, not being permanently in the depleted state. In this sense, the extent of the glycogen depletion that is happening should be positively associated with the health benefits. And significant glycogen depletion can only happen if glycogen stores are at least half full to start with.

Reference

Wilmore, J.H., Costill, D.L., & Kenney, W.L. (2007). Physiology of sport and exercise. Champaign, IL: Human Kinetics. [Note: the figure may be found in a different edition.]

Tuesday, January 28, 2020

The steep obesity increase in the USA in the 1980s: In a sense, it reflects a major success story

Obesity rates have increased in the USA over the years, but the steep increase starting around the 1980s is unusual. Wang and Beydoun do a good job at discussing this puzzling phenomenon (), and a blog post by Discover Magazine provides a graph (see below) that clear illustrates it ().



What is the reason for this?

You may be tempted to point at increases in calorie intake and/or changes in macronutrient composition, but neither can explain this sharp increase in obesity in the 1980s. The differences in calorie intake and macronutrient composition are simply not large enough to fully account for such a steep increase. And the data is actually full of oddities.

For example, an article by Austin and colleagues (which ironically blames calorie consumption for the obesity epidemic) suggests that obese men in a NHANES (2005–2006) sample consumed only 2.2 percent more calories per day on average than normal weight men in a NHANES I (1971–1975) sample ().

So, what could be the main reason for the steep increase in obesity prevalence since the 1980s?

The first clue comes from an interesting observation. If you age-adjust obesity trends (by controlling for age), you end up with a much less steep increase. The steep increase in the graph above is based on raw, unadjusted numbers. There is a higher prevalence of obesity among older people (no surprise here). And older people are people that have survived longer than younger people. (Don’t be too quick to say “duh” just yet.)

This age-obesity connection also reflects an interesting difference between humans living “in the wild” and those who do not, which becomes more striking when we compare hunter-gatherers with modern urbanites. Adult hunter-gatherers, unlike modern urbanites, do not gain weight as they age; they actually lose weight (, ).

Modern urbanites gain a significant amount of weight, usually as body fat, particularly after age 40. The table below, from an article by Flegal and colleagues, illustrates this pattern quite clearly (). Obesity prevalence tends to be highest between ages 40-59 in men; and this has been happening since the 1960s, with the exception of the most recent period listed (1999-2000).



In the 1999-2000 period obesity prevalence in men peaked in the 60-74 age range. Why? With progress in medicine, it is likely that more obese people in that age range survived (however miserably) in the 1999-2000 period. Obesity prevalence overall tends to be highest between ages 40-74 in women, which is a wider range than in men. Keep in mind that women tend to also live longer than men.

Because age seems to be associated with obesity prevalence among urbanites, it would be reasonable to look for a factor that significantly increased survival rates as one of the main reasons for the steep increase in the prevalence of obesity in the USA in the 1980s. If significantly more people were surviving beyond age 40 in the 1980s and beyond, this would help explain the steep increase in obesity prevalence. People don’t die immediately after they become obese; obesity is a “disease” that first and foremost impairs quality of life for many years before it kills.

Now look at the graph below, from an article by Armstrong and colleagues (). It shows a significant decrease in mortality from infectious diseases in the USA since 1900, reaching a minimum point between 1950 and 1960 (possibly 1955), and remaining low afterwards. (The spike in 1918 is due to the influenza pandemic.) At the same time, mortality from non-infectious diseases remains relatively stable over the same period, leading to a similar decrease in overall mortality.



When proper treatment options are not available, infectious diseases kill disproportionately at ages 15 and under (). Someone who was 15 years old in the USA in 1955 would have been 40 years old in 1980, if he or she survived. Had this person been obese, this would have been just in time to contribute to the steep increase in obesity trends in the USA. This increase would be cumulative; if this person were to live to the age of 70, he or she would be contributing to the obesity statistics up to 2010.

Americans are clearly eating more, particularly highly palatable industrialized foods whose calorie-to-nutrient ratio is high. Americans are also less physically active. But one of the fundamental reasons for the sharp increase in obesity rates in the USA since the early 1980s is that Americans have been surviving beyond age 40 in significantly greater numbers.

This is due to the success of modern medicine and public health initiatives in dealing with infectious diseases.

PS: It is important to point out that this post is not about the increase in American obesity in general over the years, but rather about the sharp increase in obesity since the early 1980s. A few alternative hypotheses have been proposed in the comments section, of which one seems to have been favored by various readers: a significant increase in consumption of linoleic acid (not to be confused with linolenic acid) since the early 1980s.