Monday, December 23, 2024

The man who ate 25 eggs per day: What does this case really tell us?

Many readers of this blog have probably heard about the case of the man who ate approximately 25 eggs (20 to 30) per day for over 15 years (probably well over), was almost 90 years old (88) when the case was published in the prestigious The New England Journal of Medicine, and was in surprisingly good health ().

The case was authored by the late Dr. Fred Kern, Jr., a widely published lipid researcher after whom the Kern Lipid Conference is named (). One of Kern’s research interests was bile, a bitter-tasting fluid produced by the liver (and stored in the gallbladder) that helps with the digestion of lipids in the small intestine. He frames the man’s case in terms of a compensatory adaptation tied to bile secretion, arguing that this man was rather unique in his ability to deal with a lethal daily dose of dietary cholesterol.

Kern seemed to believe that dietary cholesterol was harmful, but that this man was somehow “immune” to it. This is ironic, because often this case is presented as evidence against the hypothesis that dietary cholesterol can be harmful. The table below shows the general nutrient content of the man’s daily diet of eggs. The numbers in this and other tables are based on data from Nutritiondata.com (), in some cases triangulated with other data. The 5.3 g of cholesterol in the table (i.e., 5,300 mg) is 1,775 percent the daily value recommended by the Institute of Medicine of the U.S. National Academy of Sciences ().



As you can see, the man was on a very low carbohydrate diet with a high daily intake of fat and protein. The man is described as an: “… 88-year-old man who lived in a retirement community [and] complained only of loneliness since his wife's death. He was an articulate, well-educated elderly man, healthy except for an extremely poor memory without other specific neurologic deficits … His general health had been excellent, without notable symptoms. He had mild constipation.”

The description does not suggest inherited high longevity: “His weight had been constant at 82 to 86 kg (height, 1.87 m). He had no history (according to the patient and his personal physician of 15 years) of heart disease, stroke, or kidney disease … The patient had never smoked and never drank excessively. His father died of unknown causes at the age of 40, and his mother died at 76 … He kept a careful record, egg by egg, of the number ingested each day …”

The table below shows the fat content of the man’s daily diet of eggs. With over 14 g of omega-6 fat intake every day, this man was probably close to or in “industrial seed oils territory” (), as far as daily omega-6 fat intake is concerned. And the intake of omega-3 fats, at less than 1 g, was not nearly enough to balance it. However, here is a relevant fact – this man was not consuming any industrial seed oils. He liked his eggs soft-boiled, which is why the numbers in this post refer to boiled eggs.



This man weighed between 82 to 86 kg, which is about 180 to 190 lbs. His height was 1.87 m, or about 6 ft 1 in. Therefore his body mass index varied between approximately 23 and 25, which is in the normal range. In other words, this person was not even close to obese during the many years he consumed 25 eggs or so per day. In the comments section of a previous post, on the sharp increase in obesity since the 1980s (), several readers argued that the sharp increase in obesity was very likely caused by an increase in omega-6 fat consumption.

I am open to the idea that industrialized omega-6 fats played a role in the sharp increase in obesity observed since the 1980s. When it comes to omega-6 fat consumption in general, including that in “more natural” foods (e.g., poultry and eggs), I am more skeptical. Still, it is quite possible that a diet high in omega-6 fats in general is unhealthy primarily if it is devoid of other nutrients. This man’s overall diet might have been protective not because of what he was not eating, but because of what he was eating.

The current debates pitting one diet against another often revolve around the ability of one diet or another to eliminate or reduce the intake of a “bad thing” (e.g., cholesterol, saturated fat, carbohydrates). Perhaps the discussion should be more focused on, or at least not completely ignore, what one diet or another include as protective factors. This would help better explain “odd findings”, such as the lowest-mortality body mass index of 26 in urban populations (). It would also help better explain “surprising cases”; such as this 25-eggs-a-day man’s, vegetarian-vegan “ageless woman” Annette Larkins’s (), and the decidedly carnivore De Vany couple’s ().

The table below shows the vitamin content of the man’s daily diet of eggs. The vitamin K2 content provided by Nutritiondata.com was incorrect; I had to get what seems to be the right number by triangulating values taken from various publications. And here we see something interesting. This man was consuming approximately the equivalent in vitamin K2 that one would get by eating 4 ounces of foie gras () every day. Foie gras, the fatty liver of overfed geese, is the richest known animal source of vitamin K2. This man’s diet was also high in vitamin A, which is believed to act synergistically with vitamin K2 – see Chris Masterjohn’s article on Weston Price’s “activator X” ().



Kern argued that the very high intake of dietary cholesterol led to a sharp increase in bile secretion, as the body tried to “get rid” of cholesterol (which is used in the synthesis of bile). However, the increased bile secretion might have been also been due to the high fat content of this man’s diet, since one of the main functions of bile is digestion of fats. Whatever the case may be, increased bile secretion leads to increased absorption of fat-soluble vitamins, and vitamins K2 and A are fat-soluble vitamins that seem to be protective against cardiovascular disease, cancer and other degenerative diseases.

Finally, the table below shows the mineral content of the man’s daily diet of eggs. As you can see, this man consumed 550 percent the officially recommended daily intake of selenium. This intake was slightly lower than the 400 micrograms per day purported to cause selenosis in adults (). Similarly to vitamins K2 and A, selenium seems to be protective against cardiovascular disease, cancer and other degenerative diseases. This man’s diet was also rich in phosphorus, needed for healthy teeth and bones.



Not too many people live to be 88 years of age; many fewer reach that age in fairly good health. The country with the highest average life expectancy in the world at the time of this writing is Japan, with a life expectancy of about 82 years (79 for men, and 86 for women). Those who think that they need a high HDL cholesterol and a low LDL cholesterol to be in good health, and thus live long lives, may be surprised at this man’s lipid profile: “The patient's plasma lipid levels were normal: total cholesterol, 5.18 mmol per liter (200 mg per deciliter); LDL, 3.68 mmol per liter (142 mg per deciliter); and HDL, 1.17 mmol per liter (45 mg per deciliter). The ratio of LDL to HDL cholesterol was 3.15.”

If we assume that this man is at least somewhat representative of the human species, and not a major exception as Kern argued, this case tells us that a diet of 25 eggs per day followed by over 15 years may actually be healthy for humans. Such diet has the following features:

- It is very high in dietary cholesterol.

- It involves a high intake of omega-6 fats from animal sources, with none coming from industrial seed oils.

- It involves a high overall intake of fats, including saturated fats.

- It is fairly high in protein, all of which from animal sources.

- It is a very low carbohydrate diet, with no sugar in it.

- It is a nutritious diet, rich in vitamins K2 and A, as well as in selenium and phosphorus.

This man ate 25 eggs per day apparently due to an obsession tied to mental problems. Repeated attempts at changing his behavior were unsuccessful. He said: “Eating these eggs ruins my life, but I can't help it.”

Thursday, November 21, 2024

The megafat could be the healthiest


Typically obesity leads to health problems via insulin resistance (). Excess calories are stored as fat in fat cells up to a certain point. Beyond this point fat cells start rejecting fat. This is the point where fat cells become insulin resistant.

When they become insulin resistant, fat cells no longer respond to the insulin-mediated signal that they should store fat. Fat then increases in circulation and starts getting stored in tissues other than fat cells, including organ tissues (visceral fat). When the organ in question is the liver, this is called non-alcoholic fatty liver disease.

This progression happens with most people, but not with those who can progress to extremely high body fat levels (). Those people are the “megafat-prone” (MP). In the MP, fat cells take a long time to start rejecting fat. So the MP can keep on gaining body fat, often with no sign of diabetes at body fat levels that would have caused serious harm to most people.

One could say that the MP are extremely metabolically resilient. By not becoming insulin resistance as they gain more and more body fat, the MP are somewhat similar to sumo wrestlers (photo below from Nationalgeographic.com); although the main reason why sumo wrestlers do not develop insulin resistance is vigorous exercise. Visceral fat is very easy to "mobilize" through vigorous exercise; this being the basis for the "fat-but-fit" phenomenon (). There are two interesting, and also speculative, inferences that can be made based on all of this.



One is that the MP could potentially be the healthiest people among us. This is due to their extreme metabolic resilience, which should be fairly protective if they can avoid getting up to the unhealthy point of body fat for them. In fact, they could be overweight or even obese and fairly healthy, at least in terms of degenerative diseases. This is a genetic predisposition, which is likely to run in families.

The other inference is that the MP would probably not look “ripped” at relatively low weights. Since their body fat cells have above average insulin sensitivity at high body fat levels, one would expect that high insulin sensitivity to remain at low body fat levels. Insulin sensitivity is strongly associated with longevity ().

So, bringing all of this together, here are two apparent paradoxes. That person who already gained a lot of body fat and is an MP, showing no health problems at or near obesity, could be the healthiest among us. And that person who cannot look ripped at low body fat levels, no matter how hard he or she tries, may be one of the 2 percent or so of the population who will live beyond 90.

Unfortunately it is hard to tell whether someone is MP or not until the person actually becomes megafat. And if you are MP and actually become megafat, the afterlife will very likely arrive sooner rather than later.

Thursday, October 31, 2024

Want to make coffee less acidic? Add cream to it

The table below is from a 2008 article by Ehlen and colleagues (), showing the amount of erosion caused by various types of beverages, when teeth were exposed to them for 25 h in vitro. Erosion depth is measured in microns. The third row shows the chance probabilities (i.e., P values) associated with the differences in erosion of enamel and root.


As you can see, even diet drinks may cause tooth erosion. That is not to say that if you drink a diet soda occasionally you will destroy your teeth, but regular drinking may be a problem. I discussed this study in a previous post (). After that post was published here some folks asked me about coffee, so I decided to do some research.

Unfortunately coffee by itself can also cause some erosion, primarily because of its acidity. Generally speaking, you want a liquid substance that you are interested in drinking to have a pH as close to 7 as possible, as this pH is neutral (). Tap and mineral water have a pH that is very close to 7. Black coffee seems to have a pH of about 4.8.

Also problematic are drinks containing fermentable carbohydrates, such as sucrose, fructose, glucose, and lactose. These are fermented by acid-producing bacteria. Interestingly, when fermentable carbohydrates are consumed as part of foods that require chewing, such as fruits, acidity is either neutralized or significantly reduced by large amounts of saliva being secreted as a result of the chewing process.

So what to do about coffee?

One possible solution is to add heavy cream to it. A small amount, such as a teaspoon, appears to bring the pH in a cup of coffee to a little over 6. Another advantage of heavy cream is that it has no fermentable carbohydrates; it has no carbohydrates, period. You will have to get over the habit of drinking sweet beverages, including sweet coffee, if you were unfortunate enough to develop that habit (like so many people living in cities today).

It is not easy to find reliable pH values for various foods. I guess dentistry researchers are more interested in ways of repairing damage already done, and there doesn't seem to be much funding available for preventive dentistry research. Some pH testing results from a University of Cincinnati college biology page were available at the time of this writing; they appeared to be reasonably reliable the last time I checked them ().

Sunday, September 29, 2024

Body fat and disease: How much body fat can I lose in one day?

Body fat is not an inert deposit of energy. It can be seen as a distributed endocrine organ. Body fat cells, or adipocytes, secrete a number of different hormones into the bloodstream. Major hormones secreted by adipose tissue are adiponectin and leptin.

Estrogen is also secreted by body fat, which is one of the reasons why obesity is associated with infertility. (Yes, abnormally high levels of estrogen can reduce fertility in both men and women.) Moreover, body fat secretes tumor necrosis factor, a hormone that is associated with generalized inflammation and a number of diseases, including cancer, when in excess.

The reduction in circulating tumor necrosis factor and other pro-inflammatory hormones as one loses weight is one reason why non-obese people usually experience fewer illness symptoms than those who are obese in any given year, other things being equal. For example, the non-obese will have fewer illness episodes that require full rest during the flu season. In those who are obese, the inflammatory response accompanying an illness (which is necessary for recovery) will often be exaggerated.

The exaggerated inflammatory response to illness often seen in the obese is one indication that obesity in an unnatural state for humans. It is reasonable to assume that it was non-adaptive for our Paleolithic ancestors to be unable to perform daily activities because of an illness. The adaptive response would be physical discomfort, but not to the extent that one would require full rest for a few days to fully recover.

Inflammation markers such as C-reactive protein are positively correlated with body fat. As body fat increases, so does inflammation throughout the body. Lipid metabolism is negatively affected by excessive body fat, and so is glucose metabolism. Obesity is associated with leptin and insulin resistance, which are precursors of diabetes type 2.

Some body fat is necessary for survival; that is normally called essential body fat. The table below (from Wikipedia) shows various levels of body fat, including essential levels. Also shown are body fat levels found in athletes, as well as fit, “not so fit” (indicated as "Acceptable"), and obese individuals. Women normally have higher healthy levels of body fat than men.


If one is obese, losing body fat becomes a very high priority for health reasons.

There are many ways in which body fat can be measured.

When one loses body fat through fasting, the number of adipocytes is not actually reduced. It is the amount of fat stored in adipocytes that is reduced.

How much body fat can a person lose in one day?

Let us consider a man, John, whose weight is 170 lbs (77 kg), and whose body fat percentage is 30 percent. John carries around 51 lbs (23 kg) of body fat. Standing up is, for John, a form of resistance exercise. So is climbing stairs.

During a 24-hour fast, John’s basal metabolic rate is estimated at about 2,550 kcal/day. This is the number of calories John would spend doing nothing the whole day. It can vary a lot for different individuals; here it is calculated as 15 times John’s weight in lbs.

The 2,550 kcal/day is likely an overestimation for John, because the body adjusts its metabolic rate downwards during a fast, leading to fewer calories being burned.

Typically women have lower basal metabolic rates than men of equal weight.

For the sake of discussion, we expect each gram of John’s body fat to contribute about 8 kcals of energy, assuming a rate of conversion of body fat to calories of about 90 percent.

Thus during a 24-hour fast John burns about 318 g of fat, or about 0.7 lbs. In reality, the actual amount may be lower (e.g., 0.35 lbs), because of the body's own down-regulation of its basal metabolic rate during a fast. This down-regulation varies widely across different individuals, and is generally small.

Many people think that this is not much for the effort. The reality is that body fat loss is a long term game, and cannot be achieved through fasting alone; this is a discussion for another post.

It is worth noting that intermittent fasting (e.g., one 24-hour fast per week) has many other health benefits, even if no overall calorie restriction occurs. That is, intermittent fasting is associated with health benefits even if one fasts every other day, and eats twice one's normal intake on the non-fasting days.

Some of the calories being burned during John's 24-hour fast will be from glucose, mostly from John’s glycogen reserves in the liver if he is at rest. Muscle glycogen stores, which store more glucose substrate (i.e., material for production of glucose) than liver glycogen, are mobilized primarily through anaerobic exercise.

Very few muscle-derived calories end up being used through the protein and glycogen breakdown pathways in a 24-hour fast. John’s liver glycogen reserves, plus the body’s own self-regulation, will largely spare muscle tissue.

The idea that one has to eat every few hours to avoid losing muscle tissue is complete nonsense. Muscle buildup and loss happen all the time through amino acid turnover.

Net muscle gain occurs when the balance is tipped in favor of buildup, to which resistance exercise and the right hormonal balance (including elevated levels of insulin) contribute.

One of the best ways to lose muscle tissue is lack of use. If John's arm were immobilized in a cast, he would lose muscle tissue in that arm even if he ate every 30 minutes.

Longer fasts (e.g., lasting multiple days, with only water being consumed) will invariably lead to some (possibly significant) muscle breakdown, as muscle is the main store of glucose-generating substrate in the human body.

In a 24-hour fast (a relatively short fast), the body will adjust its metabolism so that most of its energy needs are met by fat and related byproducts. This includes ketones, which are produced by the liver based on dietary and body fat.

How come some people can easily lose 2 or 3 pounds of weight in one day?

Well, it is not body fat that is being lost, or muscle. It is water, which may account for as much as 75 percent of one’s body weight.

References:

Elliott, W.H., & Elliott, D.C. (2009). Biochemistry and molecular biology. New York: NY: Oxford University Press.

Fleck, S.J., & Kraemer, W.J. (2004). Designing resistance training programs. Champaign, IL: Human Kinetics.

Large, V., Peroni, O., Letexier, D., Ray, H., & Beylot, M. (2004). Metabolism of lipids in human white adipocyte. Diabetes & Metabolism, 30(4), 294-309.

Thursday, August 29, 2024

Compensatory adaptation as a unifying concept: Understanding how we respond to diet and lifestyle changes

Trying to understand each body response to each diet and lifestyle change, individually, is certainly a losing battle. It is a bit like the various attempts to classify organisms that occurred prior to solid knowledge about common descent. Darwin’s theory of evolution is a theory of common descent that makes classification of organisms a much easier and logical task.

Compensatory adaptation (CA) is a broad theoretical framework that hopefully can help us better understand responses to diet and lifestyle changes. CA is a very broad idea, and it has applications at many levels. I have discussed CA in the context of human behavior in general (Kock, 2002), and human behavior toward communication technologies (Kock, 2001; 2005; 2007). Full references and links are at the end of this post.

CA is all about time-dependent adaptation in response to stimuli facing an organism. The stimuli may be in the form of obstacles. From a general human behavior perspective, CA seems to be at the source of many success stories. A few are discussed in the Kock (2002) book; the cases of Helen Keller and Stephen Hawking are among them.

People who have to face serious obstacles sometimes develop remarkable adaptations that make them rather unique individuals. Hawking developed remarkable mental visualization abilities, which seem to be related to some of his most important cosmological discoveries. Keller could recognize an approaching person based on floor vibrations, even though she was blind and deaf. Both achieved remarkable professional success, perhaps not as much in spite but because of their disabilities.

From a diet and lifestyle perspective, CA allows us to make one key prediction. The prediction is that compensatory body responses to diet and lifestyle changes will occur, and they will be aimed at maximizing reproductive success, but with a twist – it’s reproductive success in our evolutionary past! We are stuck with those adaptations, even though we live in modern environments that differ in many respects from the environments where our ancestors lived.

Note that what CA generally tries to maximize is reproductive success, not survival success. From an evolutionary perspective, if an organism generates 30 offspring in a lifetime of 2 years, that organism is more successful in terms of spreading its genes than another that generates 5 offspring in a lifetime of 200 years. This is true as long as the offspring survive to reproductive maturity, which is why extended survival is selected for in some species.

We live longer than chimpanzees in part because our ancestors were “good fathers and mothers”, taking care of their children, who were vulnerable. If our ancestors were not as caring or their children not as vulnerable, maybe this blog would have posts on how to control blood glucose levels to live beyond the ripe old age of 50!

The CA prediction related to responses aimed at maximizing reproductive success is a straightforward enough prediction. The difficult part is to understand how CA works in specific contexts (e.g., Paleolithic dieting, low carbohydrate dieting, calorie restriction), and what we can do to take advantage (or work around) CA mechanisms. For that we need a good understanding of evolution, some common sense, and also good empirical research.

One thing we can say with some degree of certainty is that CA leads to short-term and long-term responses, and that those are likely to be different from one another. The reason is that a particular diet and lifestyle change affected the reproductive success of our Paleolithic ancestors in different ways, depending on whether it was a short-term or long-term change. The same is true for CA responses at different stages of one’s life, such as adolescence and middle age; they are also different.

This is the main reason why many diets that work very well in the beginning (e.g., first months) frequently cease to work as well after a while (e.g., a year).

Also, CA leads to psychological responses, which is one of the key reasons why most diets fail. Without a change in mindset, more often than not one tends to return to old habits. Hunger is not only a physiological response; it is also a psychological response, and the psychological part can be a lot stronger than the physiological one.

It is because of CA that a one-month moderately severe calorie restriction period (e.g., 30% below basal metabolic rate) will lead to significant body fat loss, as the body produces hormonal responses to several stimuli (e.g., glycogen depletion) in a compensatory way, but still “assuming” that liberal amounts of food will soon be available. Do that for one year and the body will respond differently, “assuming” that food scarcity is no longer short-term and thus that it requires different, and possibly more drastic, responses.

Among other things, prolonged severe calorie restriction will lead to a significant decrease in metabolism, loss of libido, loss of morale, and physical as well as mental fatigue. It will make the body hold on to its fat reserves a lot more greedily, and induce a number of psychological responses to force us to devour anything in sight. In several people it will induce psychosis. The results of prolonged starvation experiments, such as the Biosphere 2 experiments, are very instructive in this respect.

It is because of CA that resistance exercise leads to muscle gain. Muscle gain is actually a body’s response to reasonable levels of anaerobic exercise. The exercise itself leads to muscle damage, and short-term muscle loss. The gain comes after the exercise, in the following hours and days (and with proper nutrition), as the body tries to repair the muscle damage. Here the body “assumes” that the level of exertion that caused it will continue in the near future.

If you increase the effort (by increasing resistance or repetitions, within a certain range) at each workout session, the body will be constantly adapting, up to a limit. If there is no increase, adaptation will stop; it will even regress if exercise ceases altogether. Do too much resistance training (e.g., multiple workout sessions everyday), and the body will react differently. Among other things, it will create deterrents in the form of pain (through inflammation), physical and mental fatigue, and even psychological aversion to resistance exercise.

CA processes have a powerful effect on one’s body, and even on one’s mind!

References:

Kock, N. (2001). Compensatory Adaptation to a Lean Medium: An Action Research Investigation of Electronic Communication in Process Improvement Groups. IEEE Transactions on Professional Communication, 44(4), 267-285.

Kock, N. (2002). Compensatory Adaptation: Understanding How Obstacles Can Lead to Success. Infinity Publishing, Haverford, PA. (Additional link.)

Kock, N. (2005). Compensatory adaptation to media obstacles: An experimental study of process redesign dyads. Information Resources Management Journal, 18(2), 41-67.

Kock, N. (2007). Media Naturalness and Compensatory Encoding: The Burden of Electronic Media Obstacles is on Senders. Decision Support Systems, 44(1), 175-187.

Friday, July 26, 2024

Large LDL and small HDL particles: The best combination

High-density lipoprotein (HDL) is one of the five main types of lipoproteins found in circulation, together with very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and chylomicrons.

After a fatty meal, the blood is filled with chylomicrons, which carry triglycerides (TGAs). The TGAs are transferred to cells from chylomicrons via the activity of enzymes, in the form of free fatty acids (FFAs), which are used by those cells as sources of energy.

After delivering FFAs to the cells, the chylomicrons progressively lose their TGA content and “shrink”, eventually being absorbed and recycled by the liver. The liver exports part of the TGAs that it gets from chylomicrons back to cells for use as energy as well, now in the form of VLDL. As VLDL particles deliver TGAs to the cells they shrink in size, similarly to chylomicrons. As they shrink, VLDL particles first become IDL and then LDL particles.

The figure below (click on it to enlarge), from Elliott & Elliott (2009; reference at the end of this post), shows, on the same scale: (a) VLDL particles, (b) chylomicrons, (c) LDL particles, and (d) HDL particles. The dark bar at the bottom of each shot is 1000 A in length, or 100 nm (A = angstrom; nm = nanometer; 1 nm = 10 A).


As you can see from the figure, most of the LDL particles shown are about 1/4 of the length of the dark bar in diameter, often slightly more, or about 25-27 nm in size. They come in different sizes, with sizes in this range  being the most common. The smaller and denser they are, the more likely they are to contribute to the formation of atherosclerotic plaque in the presence of other factors, such as chronic inflammation. The larger they become, which usually happens in diets high in saturated fat, the less likely they are to form plaque.

Note that the HDL particles are rather small compared to the LDL particles. Shouldn’t they cause plaque then? Not really. Apparently they have to be small, compared to LDL particles, to do their job effectively.

HDL is a completely different animal from VLDL, IDL and LDL. HDL particles are produced by the liver as dense disk-like particles, known as nascent HDL particles. These nascent HDL particles progressively pick up cholesterol from cells, as well as performing a number of other functions, and “fatten up” with cholesterol in the process.

This process also involves HDL particles picking up cholesterol from plaque in the artery walls, which is one of the reasons why HDL cholesterol is informally called “good” cholesterol. In fact, neither HDL nor LDL are really cholesterol; HDL and LDL are particles that carry cholesterol, protein and fat.

As far as particle size is concerned, LDL and HDL are opposites. Large LDL particles are the least likely to cause plaque formation, because LDL particles have to be approximately 25 nm in diameter or smaller to penetrate the artery walls. With HDL the opposite seems to be true, as HDL particles need to be small (compared with LDL particles) to easily penetrate the artery walls in order to pick up cholesterol, leave the artery walls with their cargo, and have it returned back to the liver.

Another interesting aspect of this cycle is that the return to the liver of cholesterol picked up by HDL appears to be done largely via IDL and LDL particles (Elliott & Elliott, 2009), which get the cholesterol directly from HDL particles! Life is not that simple.

Reference:

William H. Elliott & Daphne C. Elliott (2009). Biochemistry and Molecular Biology. 4th Edition. New York: NY: Oxford University Press.

Thursday, June 27, 2024

Sensible sun exposure

Sun exposure leads to the production in the human body of a number of compounds that are believed to be health-promoting. One of these is known as “vitamin D” – an important hormone precursor ().

About 10,000 IU is considered to be a healthy level of vitamin D production per day. This is usually the maximum recommended daily supplementation dose, for those who have low vitamin D levels.

How much sun exposure, when the sun is at its peak (around noon), does it take to reach this level? Approximately 10 minutes.

We produce about 1,000 IU per minute of sun exposure, but seem to be limited to 10,000 IU per day. This assumes a level of skin exposure comparable to that of someone wearing a bathing suit.

Contrary to popular belief, this does not significantly decrease with aging. Among those aged 65 and older, pre-sunburn full-body exposure to sunlight leads to 87 percent of the peak vitamin D production seen in young subjects ().

Evolution seems to have led to a design that favors chronic (every day or so) but relatively brief sun exposure. Most of the sun rays are of the UVA type. However it is the UVB rays, which peak when the sun is high, that stimulate vitamin D production the most. The UVA rays in fact deplete vitamin D. Therefore, after 10 minutes of sun exposure per day when the sun is high, we would be mostly depleting vitamin D by sunbathing when the sun is low.

There is a lot of research that suggests that extended sun exposure also causes skin damage, even exposure below skin cancer levels. Also, anecdotally there are many reports of odd things happening with people who sunbathe for extended periods of time at the pool. Examples are moles appearing in odd places like the bottom of the feet, cases of actinic keratosis, and even temporary partial blindness.


Source: Lifecasting.org

There is something inherently unnatural about sunbathing at the pool, and exponentially more so in tan booths. Hunter-gatherers enjoy much sun exposure by generally avoiding the sun; particularly from the front, as this impairs the vision.

Pools often have reflective surfaces around them, so that people will not burn their feet. They cause glare, and over time likely contribute to the development of cataracts.

When you go to the pool, put your hands perpendicular to your face below you nose so that much of the light coming from those reflective surfaces does not hit your eyes directly. If you do this, you’ll probably notice that the main source of glare is what is coming from below, not from above.

In the African savannas, where our species emerged, this type of reflective surface has no commonly found analog. You don't have to go to the pool to find all kinds of sources of unnatural glare in urban environments.

Snow is comparable. Hunter-gatherers who live in areas permanently or semi-permanently covered with snow, such as the traditional Inuit, have a much higher incidence of cataracts than those who don’t.

So, what would be some of the characteristics of sensible sun exposure during the summer, particular at pools? Considering all that is said above, I’d argue that these should be in the list:

- Standing and moving while sunbathing, as opposed to sitting or lying down.

- Sunbathing for about 10 minutes, when the sun is high, staying mostly in the shade after 10 minutes or so of exposure.

- Wearing eye protection, such as polarized sunglasses.

- Avoiding the sun hitting you directly in the face, even with eye protection, as the facial skin is unlikely to have the same level of resistance to sun damage as other parts that have been more regularly exposed in our evolutionary past (e.g., shoulders).

- Covering those areas that get sunlight perpendicularly while sunbathing when the sun is high, such as the top part of the shoulders if standing in the sun.

Doing these things could potentially maximize the benefits of sun exposure, while at the same time minimizing its possible negative consequences.