Trying to understand each body response to each diet and lifestyle change, individually, is certainly a losing battle. It is a bit like the various attempts to classify organisms that occurred prior to solid knowledge about common descent. Darwin’s theory of evolution is a theory of common descent that makes classification of organisms a much easier and logical task.
Compensatory adaptation (CA) is a broad theoretical framework that hopefully can help us better understand responses to diet and lifestyle changes. CA is a very broad idea, and it has applications at many levels. I have discussed CA in the context of human behavior in general (Kock, 2002), and human behavior toward communication technologies (Kock, 2001; 2005; 2007). Full references and links are at the end of this post.
CA is all about time-dependent adaptation in response to stimuli facing an organism. The stimuli may be in the form of obstacles. From a general human behavior perspective, CA seems to be at the source of many success stories. A few are discussed in the Kock (2002) book; the cases of Helen Keller and Stephen Hawking are among them.
People who have to face serious obstacles sometimes develop remarkable adaptations that make them rather unique individuals. Hawking developed remarkable mental visualization abilities, which seem to be related to some of his most important cosmological discoveries. Keller could recognize an approaching person based on floor vibrations, even though she was blind and deaf. Both achieved remarkable professional success, perhaps not as much in spite but because of their disabilities.
From a diet and lifestyle perspective, CA allows us to make one key prediction. The prediction is that compensatory body responses to diet and lifestyle changes will occur, and they will be aimed at maximizing reproductive success, but with a twist – it’s reproductive success in our evolutionary past! We are stuck with those adaptations, even though we live in modern environments that differ in many respects from the environments where our ancestors lived.
Note that what CA generally tries to maximize is reproductive success, not survival success. From an evolutionary perspective, if an organism generates 30 offspring in a lifetime of 2 years, that organism is more successful in terms of spreading its genes than another that generates 5 offspring in a lifetime of 200 years. This is true as long as the offspring survive to reproductive maturity, which is why extended survival is selected for in some species.
We live longer than chimpanzees in part because our ancestors were “good fathers and mothers”, taking care of their children, who were vulnerable. If our ancestors were not as caring or their children not as vulnerable, maybe this blog would have posts on how to control blood glucose levels to live beyond the ripe old age of 50!
The CA prediction related to responses aimed at maximizing reproductive success is a straightforward enough prediction. The difficult part is to understand how CA works in specific contexts (e.g., Paleolithic dieting, low carbohydrate dieting, calorie restriction), and what we can do to take advantage (or work around) CA mechanisms. For that we need a good understanding of evolution, some common sense, and also good empirical research.
One thing we can say with some degree of certainty is that CA leads to short-term and long-term responses, and that those are likely to be different from one another. The reason is that a particular diet and lifestyle change affected the reproductive success of our Paleolithic ancestors in different ways, depending on whether it was a short-term or long-term change. The same is true for CA responses at different stages of one’s life, such as adolescence and middle age; they are also different.
This is the main reason why many diets that work very well in the beginning (e.g., first months) frequently cease to work as well after a while (e.g., a year).
Also, CA leads to psychological responses, which is one of the key reasons why most diets fail. Without a change in mindset, more often than not one tends to return to old habits. Hunger is not only a physiological response; it is also a psychological response, and the psychological part can be a lot stronger than the physiological one.
It is because of CA that a one-month moderately severe calorie restriction period (e.g., 30% below basal metabolic rate) will lead to significant body fat loss, as the body produces hormonal responses to several stimuli (e.g., glycogen depletion) in a compensatory way, but still “assuming” that liberal amounts of food will soon be available. Do that for one year and the body will respond differently, “assuming” that food scarcity is no longer short-term and thus that it requires different, and possibly more drastic, responses.
Among other things, prolonged severe calorie restriction will lead to a significant decrease in metabolism, loss of libido, loss of morale, and physical as well as mental fatigue. It will make the body hold on to its fat reserves a lot more greedily, and induce a number of psychological responses to force us to devour anything in sight. In several people it will induce psychosis. The results of prolonged starvation experiments, such as the Biosphere 2 experiments, are very instructive in this respect.
It is because of CA that resistance exercise leads to muscle gain. Muscle gain is actually a body’s response to reasonable levels of anaerobic exercise. The exercise itself leads to muscle damage, and short-term muscle loss. The gain comes after the exercise, in the following hours and days (and with proper nutrition), as the body tries to repair the muscle damage. Here the body “assumes” that the level of exertion that caused it will continue in the near future.
If you increase the effort (by increasing resistance or repetitions, within a certain range) at each workout session, the body will be constantly adapting, up to a limit. If there is no increase, adaptation will stop; it will even regress if exercise ceases altogether. Do too much resistance training (e.g., multiple workout sessions everyday), and the body will react differently. Among other things, it will create deterrents in the form of pain (through inflammation), physical and mental fatigue, and even psychological aversion to resistance exercise.
CA processes have a powerful effect on one’s body, and even on one’s mind!
References:
Kock, N. (2001). Compensatory Adaptation to a Lean Medium: An Action Research Investigation of Electronic Communication in Process Improvement Groups. IEEE Transactions on Professional Communication, 44(4), 267-285.
Kock, N. (2002). Compensatory Adaptation: Understanding How Obstacles Can Lead to Success. Infinity Publishing, Haverford, PA. (Additional link.)
Kock, N. (2005). Compensatory adaptation to media obstacles: An experimental study of process redesign dyads. Information Resources Management Journal, 18(2), 41-67.
Kock, N. (2007). Media Naturalness and Compensatory Encoding: The Burden of Electronic Media Obstacles is on Senders. Decision Support Systems, 44(1), 175-187.
Monday, June 16, 2025
Wednesday, May 28, 2025
The theory of supercompensation: Strength training frequency and muscle gain
Generally one would expect some muscle gain as a result of strength training. Men seem to be keen on upper-body gains, while women appear to prefer lower-body gains. Yet, many people do strength training for years, and experience little or no muscle gain.
Paradoxically, those people experience major strength gains, both men and women, especially in the first few months after they start a strength training program. However, those gains are due primarily to neural adaptations, and come without any significant gain in muscle mass. This can be frustrating, especially for men. Most men are after some noticeable muscle gain as a result of strength training. (Whether that is healthy is another story, especially as one gets to extremes.)
After the initial adaptation period, of “beginner” gains, typically no strength gains occur without muscle gains.
The culprits for the lack of anabolic response are often believed to be low levels of circulating testosterone and other hormones that seem to interact with testosterone to promote muscle growth, such as growth hormone. This leads many to resort to anabolic steroids, which are drugs that mimic the effects of androgenic hormones, such as testosterone. These drugs usually increase muscle mass, but have a number of negative short-term and long-term side effects.
There seems to be a better, less harmful, solution to the lack of anabolic response. Through my research on compensatory adaptation I often noticed that, under the right circumstances, people would overcompensate for obstacles posed to them. Strength training is a form of obstacle, which should generate overcompensation under the right circumstances. From a biological perspective, one would expect a similar phenomenon; a natural solution to the lack of anabolic response.
This solution is predicted by a theory that also explains a lack of anabolic response to strength training, and that unfortunately does not get enough attention outside the academic research literature. It is the theory of supercompensation, which is discussed in some detail in several high-quality college textbooks on strength training. (Unlike popular self-help books, these textbooks summarize peer-reviewed academic research, and also provide the references that are summarized.) One example is the excellent book by Zatsiorsky & Kraemer (2006) on the science and practice of strength training.
The figure below, from Zatsiorsky & Kraemer (2006), shows what happens during and after a strength training session. The level of preparedness could be seen as the load in the session, which is proportional to: the number of exercise sets, the weight lifted (or resistance overcame) in each set, and the number of repetitions in each set. The restitution period is essentially the recovery period, which must include plenty of rest and proper nutrition.
Note that toward the end there is a sideways S-like curve with a first stretch above the horizontal line and another below the line. The first stretch is the supercompensation stretch; a window in time (e.g., a 20-hour period). The horizontal line represents the baseline load, which can be seen as the baseline strength of the individual prior to the exercise session. This is where things get tricky. If one exercises again within the supercompensation stretch, strength and muscle gains will likely happen. (Usually noticeable upper-body muscle gain happens in men, because of higher levels of testosterone and of other hormones that seem to interact with testosterone.) Exercising outside the supercompensation time window may lead to no gain, or even to some loss, of both strength and muscle.
Timing strength training sessions correctly can over time lead to significant gains in strength and muscle (see middle graph in the figure below, also from Zatsiorsky & Kraemer, 2006). For that to happen, one has not only to regularly “hit” the supercompensation time window, but also progressively increase load. This must happen for each muscle group. Strength and muscle gains will occur up to a point, a point of saturation, after which no further gains are possible. Men who reach that point will invariably look muscular, in a more or less “natural” way depending on supplements and other factors. Some people seem to gain strength and muscle very easily; they are often called mesomorphs. Others are hard gainers, sometimes referred to as endomorphs (who tend to be fatter) and ectomorphs (who tend to be skinnier).
It is not easy to identify the ideal recovery and supercompensation periods. They vary from person to person. They also vary depending on types of exercise, numbers of sets, and numbers of repetitions. Nutrition also plays a role, and so do rest and stress. From an evolutionary perspective, it would seem to make sense to work all major muscle groups on the same day, and then do the same workout after a certain recovery period. (Our Stone Age ancestors did not do isolation exercises, such as bicep curls.) But this will probably make you look more like a strong hunter-gatherer than a modern bodybuilder.
To identify the supercompensation time window, one could employ a trial-and-error approach, by trying to repeat the same workout after different recovery times. Based on the literature, it would make sense to start at the 48-hour period (one full day of rest between sessions), and then move back and forth from there. A sign that one is hitting the supercompensation time window is becoming a little stronger at each workout, by performing more repetitions with the same weight (e.g., 10, from 8 in the previous session). If that happens, the weight should be incrementally increased in successive sessions. Most studies suggest that the best range for muscle gain is that of 6 to 12 repetitions in each set, but without enough time under tension gains will prove elusive.
The discussion above is not aimed at professional bodybuilders. There are a number of factors that can influence strength and muscle gain other than supercompensation. (Still, supercompensation seems to be a “biggie”.) Things get trickier over time with trained athletes, as returns on effort get progressively smaller. Even natural bodybuilders appear to benefit from different strategies at different levels of proficiency. For example, changing the workouts on a regular basis seems to be a good idea, and there is a science to doing that properly. See the “Interesting links” area of this web site for several more focused resources of strength training.
Reference:
Zatsiorsky, V., & Kraemer, W.J. (2006). Science and practice of strength training. Champaign, IL: Human Kinetics.
Saturday, April 26, 2025
The amounts of water, carbohydrates, fat, and protein lost during a 30-day fast
When it comes to losing fat and maintaining muscle, at the same time, there are no shortcuts. The process generally has to be slow to be healthy. When one loses a lot of weight in a few days, most of what is being lost is water, followed by carbohydrates. (Carbohydrates are stored as liver and muscle glycogen.) Smaller amounts of fat and protein are also lost. The figure below (see reference at the end of post) shows the weights in grams of stored water, carbohydrates (glycogen), fat, and protein lost during a 30-day water fast.
On the first few days of the fast a massive amount of water is lost, even though drinking water is allowed in this type of fast. A significant amount of glycogen is lost as well. This is no surprise. About 2.6 g of water are lost for each 1 g of glycogen lost. That is, water is stored by the body proportionally to the amount of glycogen stored. People who do strength training on a regular basis tend to store more glycogen, particular in muscle tissue; this is a compensatory adaptation. Those folks also tend to store more water.
Not many people will try a 30-day fast. Still, the figure above has implications for almost everybody.
One implication is that if you use a bioimpedance scale to measure your body fat, you can bet that it will give you fairly misleading results if your glycogen stores are depleted. Your body fat percentage will be overestimated, because water and glycogen are lean body mass. This will happen with low carbohydrate dieters who regularly engage in intense physical exercise, aerobic or anaerobic. The physical exercise will deplete glycogen stores, which will typically not be fully replenished due to the low intake of carbohydrates.
Light endurance exercise (e.g., walking) is normally easier to maintain with a depleted “glycogen tank” than strength training, because light endurance exercise relies heavily on fat oxidation. It uses glycogen, but more slowly. Strength training, on the other hand, relies much more heavily on glycogen while it is being conducted (significant fat oxidation occurs after the exercise session), and is difficult to do effectively with a depleted “glycogen tank”.
Strength training practitioners often will feel fatigued, and will probably be unable to generate supercompensation, if their “glycogen tank” is constantly depleted. Still, compensatory adaptation can work its “magic” if one persists, and lead to long term adaptations that make athletes rely much more heavily on fat than the average person as a fuel for strength training and other types of anaerobic exercise. Some people seem to be naturally more likely to achieve this type of compensatory adaptation; others may never do so, no matter how hard they try.
Another implication is that you should not worry about short-term weight variations if your focus is on losing body fat. Losing stored water and glycogen may give you an illusion of body fat loss, but it will be only that – an illusion. You may recall this post, where body fat loss coupled with muscle gain led to some weight gain and yet to a much improved body composition. That is, the participants ended up leaner, even though they also weighed more.
The figure above also gives us some hints as to what happens with very low carbohydrate dieting (i.e., daily consumption of less than 20 grams of carbohydrates); at least at the beginning, before long term compensatory adaptation. This type of dieting mimics fasting as far as glycogen depletion is concerned, especially if protein intake is low, and has many positive short term health benefits. The depletion is not as quick as in a fast because a high fat and/or protein diet promotes higher rates of fat/protein oxidation and ketosis than fasting, which spare glycogen. (Yes, dietary fat spares glycogen. It also spares muscle tissue.) Still, the related loss of stored water is analogous to that of fasting, over a slightly longer period. The result is a marked weight loss at the beginning of the diet. This is an illusion as far as body fat loss is concerned.
Dietary protein cannot be used directly for glycogenesis; i.e., for replenishing glycogen stores. Dietary protein must first be used to generate glucose, through a process called gluconeogenesis. The glucose is then used for liver and muscle glycogenesis, among other things. This process is less efficient than glycogenesis based on carbohydrate sources (particularly carbohydrate sources that combine fructose and glucose), which is why for quite a few people (but not all) it is difficult to replenish glycogen stores and stimulate muscle growth on very low carbohydrate diets.
Glycogen depletion appears to be very healthy, but most of the empirical evidence seems to suggest that it is the depletion that creates a hormonal mix that is particularly health-promoting, not being permanently in the depleted state. In this sense, the extent of the glycogen depletion that is happening should be positively associated with the health benefits. And significant glycogen depletion can only happen if glycogen stores are at least half full to start with.
Reference
Wilmore, J.H., Costill, D.L., & Kenney, W.L. (2007). Physiology of sport and exercise. Champaign, IL: Human Kinetics. [Note: the figure may be found in a different edition.]
On the first few days of the fast a massive amount of water is lost, even though drinking water is allowed in this type of fast. A significant amount of glycogen is lost as well. This is no surprise. About 2.6 g of water are lost for each 1 g of glycogen lost. That is, water is stored by the body proportionally to the amount of glycogen stored. People who do strength training on a regular basis tend to store more glycogen, particular in muscle tissue; this is a compensatory adaptation. Those folks also tend to store more water.
Not many people will try a 30-day fast. Still, the figure above has implications for almost everybody.
One implication is that if you use a bioimpedance scale to measure your body fat, you can bet that it will give you fairly misleading results if your glycogen stores are depleted. Your body fat percentage will be overestimated, because water and glycogen are lean body mass. This will happen with low carbohydrate dieters who regularly engage in intense physical exercise, aerobic or anaerobic. The physical exercise will deplete glycogen stores, which will typically not be fully replenished due to the low intake of carbohydrates.
Light endurance exercise (e.g., walking) is normally easier to maintain with a depleted “glycogen tank” than strength training, because light endurance exercise relies heavily on fat oxidation. It uses glycogen, but more slowly. Strength training, on the other hand, relies much more heavily on glycogen while it is being conducted (significant fat oxidation occurs after the exercise session), and is difficult to do effectively with a depleted “glycogen tank”.
Strength training practitioners often will feel fatigued, and will probably be unable to generate supercompensation, if their “glycogen tank” is constantly depleted. Still, compensatory adaptation can work its “magic” if one persists, and lead to long term adaptations that make athletes rely much more heavily on fat than the average person as a fuel for strength training and other types of anaerobic exercise. Some people seem to be naturally more likely to achieve this type of compensatory adaptation; others may never do so, no matter how hard they try.
Another implication is that you should not worry about short-term weight variations if your focus is on losing body fat. Losing stored water and glycogen may give you an illusion of body fat loss, but it will be only that – an illusion. You may recall this post, where body fat loss coupled with muscle gain led to some weight gain and yet to a much improved body composition. That is, the participants ended up leaner, even though they also weighed more.
The figure above also gives us some hints as to what happens with very low carbohydrate dieting (i.e., daily consumption of less than 20 grams of carbohydrates); at least at the beginning, before long term compensatory adaptation. This type of dieting mimics fasting as far as glycogen depletion is concerned, especially if protein intake is low, and has many positive short term health benefits. The depletion is not as quick as in a fast because a high fat and/or protein diet promotes higher rates of fat/protein oxidation and ketosis than fasting, which spare glycogen. (Yes, dietary fat spares glycogen. It also spares muscle tissue.) Still, the related loss of stored water is analogous to that of fasting, over a slightly longer period. The result is a marked weight loss at the beginning of the diet. This is an illusion as far as body fat loss is concerned.
Dietary protein cannot be used directly for glycogenesis; i.e., for replenishing glycogen stores. Dietary protein must first be used to generate glucose, through a process called gluconeogenesis. The glucose is then used for liver and muscle glycogenesis, among other things. This process is less efficient than glycogenesis based on carbohydrate sources (particularly carbohydrate sources that combine fructose and glucose), which is why for quite a few people (but not all) it is difficult to replenish glycogen stores and stimulate muscle growth on very low carbohydrate diets.
Glycogen depletion appears to be very healthy, but most of the empirical evidence seems to suggest that it is the depletion that creates a hormonal mix that is particularly health-promoting, not being permanently in the depleted state. In this sense, the extent of the glycogen depletion that is happening should be positively associated with the health benefits. And significant glycogen depletion can only happen if glycogen stores are at least half full to start with.
Reference
Wilmore, J.H., Costill, D.L., & Kenney, W.L. (2007). Physiology of sport and exercise. Champaign, IL: Human Kinetics. [Note: the figure may be found in a different edition.]
Labels:
body fat,
fasting,
glycogen depletion,
muscle gain,
research
Wednesday, March 26, 2025
My transformation: I cannot remember the last time I had a fever
The two photos below (click to enlarge) were taken 4 years apart. The one on the left was taken in 2006, when I weighed 210 lbs (95 kg). Since my height is 5 ft 8 in, at that weight I was an obese person, with over 30 percent body fat. The one on the right was taken in 2010, at a weight of 150 lbs (68 kg) and about 13 percent body fat. I think I am a bit closer to the camera on the right, so the photos are not exactly on the same scale. For another post on my transformation, see this post.
My lipids improved from borderline bad to fairly good numbers, as one would expect, but the two main changes that I noticed were in terms of illnesses and energy levels. I have not had a fever in a long time. I simply cannot remember when it was the last time that I had to stay in bed because of an illness. I only remember that I was fat then. Also, I used to feel a lot more tired when I was fat. Now I seem to have a lot of energy, almost all the time.
In my estimation, I was obese or overweight for about 10 years, and was rather careless about it. A lot of that time I weighed in the 190s; with a peak weight of 210 lbs. Given that, I consider myself lucky not to have had major health problems by now, like diabetes or cancer. A friend of mine who is a doctor told me that I probably had some protection due to the fact that, when I was fat, I was fat everywhere. My legs, for example, were fat. So were my arms and face. In other words, I lot of the fat was subcutaneous, and reasonably distributed. In fact, most people do not believe me when I say that I weighed 210 lbs when that photo was taken in 2006; but maybe they are just trying to be nice.
If you are not obese, you should do everything you can to avoid reaching that point. Among other things, your chances of having cancer will skyrocket.
So, I lost a whopping 60 lbs (27 kg) over about 2-3 years. That is not so radical; about 1.6-2.5 lbs per month. There were plateaus with no weight loss, and even a few periods with weight gain. Perhaps because of that and the slow weight loss, I had none of the problems usually associated with body responses to severe calorie restriction, such as hypothyroidism. I remember a short period when I felt a little weak and miserable; I was doing exercise after long fasts (20 h or so), and not eating enough afterwards. I did that for a couple of weeks and decided against the idea.
There are no shortcuts with body fat loss, it seems. Push it too hard and the body will react; compensatory adaptation at work.
My weight has been stable, at around 150 lbs, for about 15 years now.
What did I do to lose 60 lbs? I did a number of things at different points in time. I measured various variables (e.g., intake of macronutrients, weight, body fat, HDL cholesterol etc.) and calculated associations, using a prototype version of HealthCorrelator for Excel (HCE). Based on all that, I am pretty much convinced that the main factors were the following:
- Complete removal of foods rich in refined carbohydrates and sugars from my diet, plus almost complete removal of plant foods that I cannot eat raw. (I do cook some plant foods, but avoid the ones I cannot eat raw; with a few exceptions like sweet potato.) That excluded most seeds and grains from my diet, since they can only be eaten after cooking.
- Complete removal of vegetable oils rich in omega-6 fats from my diet. I cook primarily with water. I also use butter and organic coconut oil. I occasionally use olive oil, often with water, for steam cooking.
- Consumption of plenty of animal products, with emphasis on eating the animal whole. All cooked. This includes small fish (sardines and smelts) eaten whole about twice a week, and offal (usually beef liver) about once or twice a week. I also eat eggs, about 3-5 per day.
- Practice of moderate exercise (2-3 sessions a week) with a focus on resistance training and high-intensity interval training (e.g., sprints). Also becoming more active, which does not necessarily mean exercising but doing things that involve physical motion of some kind (e.g., walking, climbing stairs, moving things around), to the tune of 1 hour or more every day.
- Adoption of more natural eating patterns; by eating more when I am hungry, usually on days I exercise, and less (including fasting) when I am not hungry. I estimate that this leads to a caloric surplus on days that I exercise, and a caloric deficit on days that I do not (without actually controlling caloric intake).
- A few minutes (15-20 min) of direct skin exposure to sunlight almost every day, when the sun is high, to get enough of the all-important vitamin D. This is pre-sunburn exposure, usually in my backyard. When traveling I try to find a place where people jog, and walk shirtless for 15-20 min.
- Stress management, including some meditation and power napping.
- Face-to-face social interaction, in addition to online interaction. Humans are social animals, and face-to-face social interaction contributes to promoting the right hormonal balance.
When I was fat, my appetite was a bit off. I was hungry at the wrong times, it seemed. Then slowly, after a few months eating essentially whole foods, my hunger seemed to start “acting normally”. That is, my hunger slowly fell into a pattern of increasing after physical exertion, and decreasing with rest. Protein and fat are satiating, but so seem to be fruits and vegetables. Never satiating for me were foods rich in refined carbohydrates and sugars – white bread, bagels, doughnuts, pasta etc.
Looking back, it almost seems too easy. Whole foods taste very good, especially if you are hungry.
But I will never want to each a peach after I have a doughnut. The peach will be tasteless!
My lipids improved from borderline bad to fairly good numbers, as one would expect, but the two main changes that I noticed were in terms of illnesses and energy levels. I have not had a fever in a long time. I simply cannot remember when it was the last time that I had to stay in bed because of an illness. I only remember that I was fat then. Also, I used to feel a lot more tired when I was fat. Now I seem to have a lot of energy, almost all the time.
In my estimation, I was obese or overweight for about 10 years, and was rather careless about it. A lot of that time I weighed in the 190s; with a peak weight of 210 lbs. Given that, I consider myself lucky not to have had major health problems by now, like diabetes or cancer. A friend of mine who is a doctor told me that I probably had some protection due to the fact that, when I was fat, I was fat everywhere. My legs, for example, were fat. So were my arms and face. In other words, I lot of the fat was subcutaneous, and reasonably distributed. In fact, most people do not believe me when I say that I weighed 210 lbs when that photo was taken in 2006; but maybe they are just trying to be nice.
If you are not obese, you should do everything you can to avoid reaching that point. Among other things, your chances of having cancer will skyrocket.
So, I lost a whopping 60 lbs (27 kg) over about 2-3 years. That is not so radical; about 1.6-2.5 lbs per month. There were plateaus with no weight loss, and even a few periods with weight gain. Perhaps because of that and the slow weight loss, I had none of the problems usually associated with body responses to severe calorie restriction, such as hypothyroidism. I remember a short period when I felt a little weak and miserable; I was doing exercise after long fasts (20 h or so), and not eating enough afterwards. I did that for a couple of weeks and decided against the idea.
There are no shortcuts with body fat loss, it seems. Push it too hard and the body will react; compensatory adaptation at work.
My weight has been stable, at around 150 lbs, for about 15 years now.
What did I do to lose 60 lbs? I did a number of things at different points in time. I measured various variables (e.g., intake of macronutrients, weight, body fat, HDL cholesterol etc.) and calculated associations, using a prototype version of HealthCorrelator for Excel (HCE). Based on all that, I am pretty much convinced that the main factors were the following:
- Complete removal of foods rich in refined carbohydrates and sugars from my diet, plus almost complete removal of plant foods that I cannot eat raw. (I do cook some plant foods, but avoid the ones I cannot eat raw; with a few exceptions like sweet potato.) That excluded most seeds and grains from my diet, since they can only be eaten after cooking.
- Complete removal of vegetable oils rich in omega-6 fats from my diet. I cook primarily with water. I also use butter and organic coconut oil. I occasionally use olive oil, often with water, for steam cooking.
- Consumption of plenty of animal products, with emphasis on eating the animal whole. All cooked. This includes small fish (sardines and smelts) eaten whole about twice a week, and offal (usually beef liver) about once or twice a week. I also eat eggs, about 3-5 per day.
- Practice of moderate exercise (2-3 sessions a week) with a focus on resistance training and high-intensity interval training (e.g., sprints). Also becoming more active, which does not necessarily mean exercising but doing things that involve physical motion of some kind (e.g., walking, climbing stairs, moving things around), to the tune of 1 hour or more every day.
- Adoption of more natural eating patterns; by eating more when I am hungry, usually on days I exercise, and less (including fasting) when I am not hungry. I estimate that this leads to a caloric surplus on days that I exercise, and a caloric deficit on days that I do not (without actually controlling caloric intake).
- A few minutes (15-20 min) of direct skin exposure to sunlight almost every day, when the sun is high, to get enough of the all-important vitamin D. This is pre-sunburn exposure, usually in my backyard. When traveling I try to find a place where people jog, and walk shirtless for 15-20 min.
- Stress management, including some meditation and power napping.
- Face-to-face social interaction, in addition to online interaction. Humans are social animals, and face-to-face social interaction contributes to promoting the right hormonal balance.
When I was fat, my appetite was a bit off. I was hungry at the wrong times, it seemed. Then slowly, after a few months eating essentially whole foods, my hunger seemed to start “acting normally”. That is, my hunger slowly fell into a pattern of increasing after physical exertion, and decreasing with rest. Protein and fat are satiating, but so seem to be fruits and vegetables. Never satiating for me were foods rich in refined carbohydrates and sugars – white bread, bagels, doughnuts, pasta etc.
Looking back, it almost seems too easy. Whole foods taste very good, especially if you are hungry.
But I will never want to each a peach after I have a doughnut. The peach will be tasteless!
Thursday, February 27, 2025
Could grain-fed beef liver be particularly nutritious?
There is a pervasive belief today that grain-fed beef is unhealthy, a belief that I addressed before in this blog () and that I think is exaggerated. This general belief seems to also apply to a related meat, one that is widely acknowledged as a major micronutrient “powerhouse”, namely grain-fed beef liver.
Regarding grain-fed beef liver, the idea is that cattle that are grain-fed tend to develop a mild form of fatty liver disease. This I am inclined to agree with.
However, I am not convinced that this is such a bad thing for those who eat grain-fed beef liver.
In most animals, including Homo sapiens, fatty liver disease seems to be associated with extra load being put on the liver. Possible reasons for this are accelerated growth, abnormally high levels of body fat, and ingestion of toxins beyond a certain hormetic threshold (e.g., alcohol).
In these cases, what would one expect to see as a body response? The extra load is associated with high oxidative stress and rate of metabolic work. In response, the body should shuttle more antioxidants and metabolism catalysts to the organ being overloaded. Fat-soluble vitamins can act as antioxidants and catalysts in various metabolic processes, among other important functions. They require fat to be stored, and can then be released over time, which is a major advantage over water-soluble vitamins; fat-soluble vitamins are longer-acting.
So you would expect an overloaded liver to have more fat in it, and also a greater concentration of fat-soluble vitamins. This would include vitamin A, which would give the liver an unnatural color, toward the orange-yellow range of the spectrum.
Grain-fed beef liver, like the muscle meat of grain-fed cattle, tends to have more fat than that of grass-fed animals. One function of this extra fat could be to store fat-soluble vitamins. This extra fat appears to have a higher omega-6 fat content as well. Still, beef liver is a fairly lean meat; with about 5 g of fat per 100 g of weight, and only 20 mg or so of omega-6 fat. Clearly consumption of beef liver in moderation is unlikely to lead to a significant increase in omega-6 fat content in one’s diet (). By consumption in moderation I mean approximately once a week.
The photo below, from Wikipedia, is of a dish prepared with foie gras. That is essentially the liver of a duck or goose that has been fattened through force-feeding, until the animal develops fatty liver disease. This “diseased” liver is particularly rich in fat-soluble vitamins; e.g., it is the best known source of the all-important vitamin K2.

Could the same happen, although to a lesser extent, with grain-fed beef liver? I don’t think it is unreasonable to speculate that it could.
Labels:
beef liver,
body fat,
grain-fed meat,
vitamin A,
vitamin D,
vitamin K2
Wednesday, January 29, 2025
Growth hormone: The fountain of youth
Growth hormone, also known as human growth hormone, seems to be implicated in a number of metabolic conditions associated with aging, and, more generally, poor health.
In adults, growth hormone deficiency is associated with: decreased calcium retention and osteoporosis, loss of muscle mass, increased fat deposition, decreased protein synthesis, and immunodeficiency. In children, growth hormone deficiency is associated with stunted growth.
Levels of growth hormones decline with age, and their decrease is believed to contribute to the aging process. Abdominal obesity is associated with low levels of growth hormone, and is also associated with the onset of the metabolic syndrome, a precursor of diabetes and cardiovascular disease.
While there are many treatments in the market that include exogenous administration of growth hormones (e.g., through injection), there are several natural ways in which growth hormone levels can be increased. These natural ways can often lead to more effective and sustainable results than prescription drugs.
For example, fasting stimulates the natural production of growth hormone. So does vigorous exercise, particularly resistance exercise with a strong anaerobic component (not cardio though). And, to the surprise of many people, deep sleep stimulates the natural production of growth hormone, perhaps more than anything else. (Although only once every 24 hours; sleeping all day does not seem to work.)
In fact, during a 24-hour period, growth hormone typically varies in pulses, or cycles. The pulses are somewhat uniformly distributed during the day, with a peak occurring at night. The graph below (source: Fleck & Kraemer, 2004) plots the typical variation of growth hormone during a 12-hour period, including the deep sleep period.
As you can see, growth hormone peaks during deep sleep; which is achieved a few hours after one goes to bed, and not too long before one wakes up.
By the way, if you want to know more about human physiology and metabolism, forget about popular diet and exercise books. Next to peer-reviewed academic articles (which are often hard to read), the best sources are college textbooks used in courses on physical education, nutrition, endocrinology, and related topics. The book from which the graph above was taken (Fleck & Kraemer, 2004), is a superb example of that.
Reference:
Fleck, S.J., & Kraemer, W.J. (2004). Designing resistance training programs. Champaign, IL: Human Kinetics.
In adults, growth hormone deficiency is associated with: decreased calcium retention and osteoporosis, loss of muscle mass, increased fat deposition, decreased protein synthesis, and immunodeficiency. In children, growth hormone deficiency is associated with stunted growth.
Levels of growth hormones decline with age, and their decrease is believed to contribute to the aging process. Abdominal obesity is associated with low levels of growth hormone, and is also associated with the onset of the metabolic syndrome, a precursor of diabetes and cardiovascular disease.
While there are many treatments in the market that include exogenous administration of growth hormones (e.g., through injection), there are several natural ways in which growth hormone levels can be increased. These natural ways can often lead to more effective and sustainable results than prescription drugs.
For example, fasting stimulates the natural production of growth hormone. So does vigorous exercise, particularly resistance exercise with a strong anaerobic component (not cardio though). And, to the surprise of many people, deep sleep stimulates the natural production of growth hormone, perhaps more than anything else. (Although only once every 24 hours; sleeping all day does not seem to work.)
In fact, during a 24-hour period, growth hormone typically varies in pulses, or cycles. The pulses are somewhat uniformly distributed during the day, with a peak occurring at night. The graph below (source: Fleck & Kraemer, 2004) plots the typical variation of growth hormone during a 12-hour period, including the deep sleep period.
As you can see, growth hormone peaks during deep sleep; which is achieved a few hours after one goes to bed, and not too long before one wakes up.
By the way, if you want to know more about human physiology and metabolism, forget about popular diet and exercise books. Next to peer-reviewed academic articles (which are often hard to read), the best sources are college textbooks used in courses on physical education, nutrition, endocrinology, and related topics. The book from which the graph above was taken (Fleck & Kraemer, 2004), is a superb example of that.
Reference:
Fleck, S.J., & Kraemer, W.J. (2004). Designing resistance training programs. Champaign, IL: Human Kinetics.
Subscribe to:
Posts (Atom)